CoMM to dissecting genetic contributions to complex traits by leveraging regulatory information.
lmm_pxem(y, w, x, maxIter)
| y | gene expression vector. |
|---|---|
| w | covariates file for eQTL data. |
| x | normalized genotype (cis-SNPs) matrix for eQTL. |
| maxIter | maximum iteration (default is 1000). |
List of model parameters
lmm_pxem fits the linear mixed model. (n < p)
Jin Liu, jin.liu@duke-nus.edu.sg
L = 1; M = 100; rho =0.5 n1 = 350; n2 = 5000; X <- matrix(rnorm((n1+n2)*M),nrow=n1+n2,ncol=M); beta_prop = 0.2; b = numeric(M); m = M * beta_prop; b[sample(M,m)] = rnorm(m); h2y = 0.05; b0 = 6; y0 <- X%*%b + b0; y <- y0 + (as.vector(var(y0)*(1-h2y)/h2y))^0.5*rnorm(n1+n2); h2 = 0.001; y1 <- y[1:n1] X1 <- X[1:n1,] y = y1; mean.x1 = apply(X1,2,mean); x1m = sweep(X1,2,mean.x1); std.x1 = apply(x1m,2,sd) x1p = sweep(x1m,2,std.x1,"/"); x1p = x1p/sqrt(dim(x1p)[2]) w1 = matrix(rep(1,n1),ncol=1); fm0 = lmm_pxem(y, w1,x1p, 100)